login
a(n) is the smallest number such that the arithmetic mean (A) and geometric mean (G) of n and a(n) are both integers.
3

%I #32 Oct 27 2022 07:31:45

%S 1,2,3,4,5,6,7,2,1,10,11,12,13,14,15,4,17,2,19,20,21,22,23,6,1,26,3,

%T 28,29,30,31,2,33,34,35,4,37,38,39,10,41,42,43,44,5,46,47,12,1,2,51,

%U 52,53,6,55,14,57,58,59,60,61,62,7,4,65,66,67,68,69,70,71,2,73,74,3,76,77,78

%N a(n) is the smallest number such that the arithmetic mean (A) and geometric mean (G) of n and a(n) are both integers.

%H Amiram Eldar, <a href="/A038387/b038387.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Andrew Howroyd)

%F If n is odd with prime factorization p1^j1*p2^j2*...pk^jk then f(n)=p1^(j1 mod 2)*p2^(j2 mod 2)*... If n is even then f(n)=2^(2-(j1 mod 2))*p2^(j2 mod 2)*... f(n)=n whenever n is squarefree or n/2 is squarefree. (_Christian G. Bower_)

%F Multiplicative with a(p^e) = p if e is odd, 4 if p=2 and e is even, 1 if p>2 and e is even. - _Vladeta Jovovic_, May 15 2003

%F Sum_{k=1..n} a(k) ~ c * n^2, where c = 3*Pi^2/80 = 0.3701101... . - _Amiram Eldar_, Oct 27 2022

%t Table[k = 1; While[Nand @@ IntegerQ /@ {(n + k)/2, Sqrt[n*k]}, k++]; k, {n, 78}] (* _Jayanta Basu_, Jul 14 2013 *)

%t f[p_, e_] := If[OddQ[e], p, If[p == 2, 4, 1]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 09 2020 *)

%o (PARI) a(n)={for(k=1, n, if((n+k)%2==0 && issquare(n*k), return(k)))} \\ _Andrew Howroyd_, Feb 12 2018

%o (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, f[i,1], if(f[i,1]==2, 4, 1)));} \\ _Amiram Eldar_, Oct 27 2022

%Y Cf. A038388, A038389.

%Y Cf. A053626, A053627.

%K nonn,easy,mult

%O 1,2

%A _N. J. A. Sloane_

%E More terms from _Vladeta Jovovic_, May 15 2003