login
A038335
Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*9^j.
1
1, 12, 9, 144, 216, 81, 1728, 3888, 2916, 729, 20736, 62208, 69984, 34992, 6561, 248832, 933120, 1399680, 1049760, 393660, 59049, 2985984, 13436928, 25194240, 25194240, 14171760, 4251528, 531441, 35831808, 188116992, 423263232
OFFSET
0,2
REFERENCES
B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
EXAMPLE
1
12 9
144 216 81
1728 3888 2916 729
20736 62208 69984 34992 6561
248832 933120 1399680 1049760 393660 59049
2985984 13436928 25194240 25194240 14171760 4251528 531441
MAPLE
A038335 := proc(i, j)
binomial(i, j)*12^(i-j)*9^j ;
end proc: # R. J. Mathar, Nov 22 2022
MATHEMATICA
Flatten[Table[Binomial[i, j]12^(i-j) 9^j, {i, 0, 10}, {j, 0, i}]] (* Harvey P. Dale, Oct 17 2013 *)
CROSSREFS
Cf. A009965 (row sums), A001021 (column 0), A001019 (diagonal)
Sequence in context: A327470 A068614 A163920 * A359737 A216856 A040023
KEYWORD
nonn,tabl,easy
AUTHOR
STATUS
approved