login
Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*11^j.
1

%I #13 Apr 22 2014 03:05:00

%S 1,7,11,49,154,121,343,1617,2541,1331,2401,15092,35574,37268,14641,

%T 16807,132055,415030,652190,512435,161051,117649,1109262,4357815,

%U 9130660,10761135,6764142,1771561,823543,9058973,42706587,111850585

%N Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*11^j.

%D B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.

%H Vincenzo Librandi, <a href="/A038277/b038277.txt">Rows n = 0..100, flattened</a>

%H Gábor Kallós, <a href="http://dx.doi.org/10.5802/ambp.211">A generalization of Pascal’s triangle using powers of base numbers</a>, Annales mathématiques Blaise Pascal, 13 no. 1 (2006), p. 1-15.

%e Triangle begins:

%e 1,

%e 7, 11,

%e 49, 154, 121,

%e 343, 1617, 2541, 1331,

%e 2401, 15092, 35574, 37268, 14641,

%e 16807, 132055, 415030, 652190, 512435, 161051,

%e ... - _Vincenzo Librandi_, Apr 22 2014

%t Flatten[Table[Binomial[i, j] 7^(i-j) 11^j, {i, 0, 10}, {j, 0, i}]] (* _Vincenzo Librandi_, Apr 22 2014 *)

%K nonn,tabl,easy

%O 0,2

%A _N. J. A. Sloane_.