The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038233 Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j)*3^j. 1
 1, 4, 3, 16, 24, 9, 64, 144, 108, 27, 256, 768, 864, 432, 81, 1024, 3840, 5760, 4320, 1620, 243, 4096, 18432, 34560, 34560, 19440, 5832, 729, 16384, 86016, 193536, 241920, 181440, 81648, 20412, 2187, 65536, 393216, 1032192, 1548288 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS T(i,j) is the number of sequences (X_1, X_2, X_3) of subsets of {1,2,...,i} such that X_1 intersect X_2 intersect X_3 is empty and X_3 contains exactly j elements.  Cf. Stanley reference. - Geoffrey Critzer, Jan 11 2016 REFERENCES B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121. R. P. Stanley, Enumerative Combinatorics Vol I, Cambridge Univ. Press, 1997, page 11. LINKS FORMULA E.g.f.: exp(4*x + 3*y*x). - Geoffrey Critzer, Jan 11 2016 EXAMPLE 1; 4,    3; 16,   24,    9; 64,   144,   108,   27; 256,  768,   864,   432,   81; 1024, 3840,  5760,  4320,  1620,  243; 4096, 18432, 34560, 34560, 19440, 5832, 729; MATHEMATICA nn = 10; Map[Select[#, # > 0 &] &, Range[0, nn]! CoefficientList[ Series[Exp[3 x + 3 y x] Exp[x], {x, 0, nn}], {x, y}]] // Grid (* Geoffrey Critzer, Jan 11 2016 *) CROSSREFS Cf. A038207, A038285. Sequence in context: A288368 A288595 A288067 * A176737 A046162 A060509 Adjacent sequences:  A038230 A038231 A038232 * A038234 A038235 A038236 KEYWORD nonn,tabl,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 13:24 EDT 2020. Contains 337393 sequences. (Running on oeis4.)