login
Triangle whose (i,j)-th entry is binomial(i,j)*2^i.
16

%I #35 Sep 08 2022 08:44:53

%S 1,2,2,4,8,4,8,24,24,8,16,64,96,64,16,32,160,320,320,160,32,64,384,

%T 960,1280,960,384,64,128,896,2688,4480,4480,2688,896,128,256,2048,

%U 7168,14336,17920,14336,7168,2048,256,512,4608,18432,43008,64512,64512,43008,18432,4608,512

%N Triangle whose (i,j)-th entry is binomial(i,j)*2^i.

%C Triangle obtained from expansion of (2 + 2*x)^n.

%H Harvey P. Dale, <a href="/A038208/b038208.txt">Table of n, a(n) for n = 0..1000</a>

%H B. N. Cyvin et al., <a href="http://match.pmf.kg.ac.rs/electronic_versions/Match34/match34_109-121.pdf">Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons</a>, Match, No. 34 (Oct 1996), pp. 109-121.

%H Franck Ramaharo, <a href="https://arxiv.org/abs/1802.07701">Statistics on some classes of knot shadows</a>, arXiv:1802.07701 [math.CO], 2018.

%H Franck Ramaharo, <a href="https://arxiv.org/abs/1805.10680">A generating polynomial for the pretzel knot</a>, arXiv:1805.10680 [math.CO], 2018.

%H Franck Ramaharo, <a href="https://arxiv.org/abs/2002.06672">A bracket polynomial for 2-tangle shadows</a>, arXiv:2002.06672 [math.CO], 2020.

%F E.g.f. for column k: 2^k*x^k/k!*exp(2*x). - _Geoffrey Critzer_, Feb 13 2014

%F From _G. C. Greubel_, Mar 21 2022: (Start)

%F T(n, n-k) = T(n, k).

%F T(n, 0) = A000079(n).

%F Sum_{k=0..n} T(n, k) = A000302(n).

%F Sum_{k=0..floor(n/2)} T(n-k, k) = A002605(n+1).

%F Sum_{k=0..floor(n/2)} T(n, k) = 2^n*A027306(n). (End)

%e 1;

%e 2, 2;

%e 4, 8, 4;

%e 8, 24, 24, 8;

%e 16, 64, 96, 64, 16;

%e 32, 160, 320, 320, 160, 32;

%e 64, 384, 960, 1280, 960, 384, 64;

%e 128, 896, 2688, 4480, 4480, 2688, 896, 128;

%e 256, 2048, 7168, 14336, 17920, 14336, 7168, 2048, 256;

%t nn=8;Map[Select[#,#>0&]&,Transpose[Table[Range[0,nn]!CoefficientList[Series[2^k x^k/k! Exp[2x],{x,0,nn}],x],{k,0,nn}]]]//Grid (* _Geoffrey Critzer_, Feb 13 2014 *)

%t Flatten[Table[Binomial[i,j]2^i,{i,0,10},{j,0,i}]] (* _Harvey P. Dale_, May 28 2015 *)

%o (PARI) for(n=0,10, for(k=0,n, print1(binomial(n,k)*2^n, ", "))) \\ _G. C. Greubel_, Oct 17 2018

%o (Magma) [Binomial(n,k)*2^n: k in [0..n], n in [0..10]]; // _G. C. Greubel_, Oct 17 2018

%o (Sage) flatten([[binomial(n,k)*2^n for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Mar 21 2022

%Y Cf. A000079, A000302 (row sums), A002605 (diagonal sums), A027306.

%K nonn,tabl,easy

%O 0,2

%A _N. J. A. Sloane_