This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038201 5-wave sequence. 9
 1, 1, 1, 1, 1, 2, 3, 4, 5, 9, 12, 14, 15, 29, 41, 50, 55, 105, 146, 175, 190, 365, 511, 616, 671, 1287, 1798, 2163, 2353, 4516, 6314, 7601, 8272, 15873, 22187, 26703, 29056, 55759, 77946, 93819, 102091, 195910, 273856, 329615, 358671, 688286, 962142 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS This sequence is related to the hendecagon or 11-gon, see A120747. Sequence of perfect distributions for a cascade merge with six tapes according to Knuth. - Michael Somos, Feb 07 2004 REFERENCES D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 5.4.3, Eq. (1). LINKS F. v. Lamoen, Wave sequences P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31. Eric W. Weisstein, Hendecagon , Wolfram Mathworld. Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, -4, 0, 0, 0, -1, 0, 0, 0, 1). FORMULA a(n) = a(n-1)+a(n-2) if n=4*m+1, a(n) = a(n-1)+a(n-4) if n=4*m+2, a(n) = a(n-1)+a(n-6) if n=4*m+3 and a(n) = a(n-1)+a(n-8) if n=4*m. G.f.: -(1+x+x^2+x^3-2*x^4-x^5+x^7-x^8-x^11+x^12)/(-1+3*x^4+3*x^8-4*x^12-x^16+x^20). a(n) =  3*a(n-4)+3*a(n-8)-4*a(n-12)-a(n-16)+a(n-20). a(n-1) = sequence(sequence(T(n,k), k=2..5), n>=2) with a(0)=1; T(n,k) = sum(T(n-1,k1), k1 = 6-k..5) with T(1,1) = T(1,2) = T(1,3) = T(1,4) = 0 and T(1,5) = 1; n>=1 and 1 <= k <= 5. [Steinbach] EXAMPLE The first few rows of the T(n,k) array are, n>=1, 1 <= k <=5: 0,   0,   0,   0,   1 1,   1,   1,   1,   1 1,   2,   3,   4,   5 5,   9,   12,  14,  15 15,  29,  41,  50,  55 55,  105, 146, 175, 190 190, 365, 511, 616, 671 G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 9*x^8 + 12*x^9 + ... MAPLE m:=5: nmax:=12: for k from 1 to m-1 do T(1, k):=0 od: T(1, m):=1: for n from 2 to nmax do for k from 1 to m do T(n, k):= add(T(n-1, k1), k1=m-k+1..m) od: od: for n from 1 to nmax/2 do seq(T(n, k), k=1..m) od; a(0):=1: Tx:=1: for n from 2 to nmax do for k from 2 to m do a(Tx):= T(n, k): Tx:=Tx+1: od: od: seq(a(n), n=0..Tx-1); # Johannes W. Meijer, Aug 03 2011 MATHEMATICA LinearRecurrence[{0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, -4, 0, 0, 0, -1, 0, 0, 0, 1}, {1, 1, 1, 1, 1, 2, 3, 4, 5, 9, 12, 14, 15, 29, 41, 50, 55, 105, 146, 175}, 50] (* Harvey P. Dale, Dec 13 2012 *) PROG (PARI) {a(n) = local(m); if( n<=0, n==0, m = (n-1)\4 * 4; sum(k=2*m - n, m, a(k)))}; CROSSREFS Cf. A038196, A038197. The a(4*n) lead to A006358; the T(n,k) lead to A069006, A038342 and A120747. Sequence in context: A093305 A065817 A084542 * A033084 A076134 A239742 Adjacent sequences:  A038198 A038199 A038200 * A038202 A038203 A038204 KEYWORD easy,nonn AUTHOR EXTENSIONS Edited by Floor van Lamoen, Feb 05 2002 Edited and information added by Johannes W. Meijer, Aug 03 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 07:58 EST 2018. Contains 318053 sequences. (Running on oeis4.)