This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038179 Result of second stage of sieve of Eratosthenes. 18
 2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 121, 125, 127, 131, 133, 137, 139, 143, 145, 149, 151 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS 2, 3 and numbers of the form 6m +- 1. Apart from first two terms, same as A007310. Terms of this sequence (starting from the third term) are equal to the result of the expression sqrt(4!*(k+1) + 1) - but only when this expression yields integral values (that is when the parameter k takes values, which are terms of A144065). - Alexander R. Povolotsky, Sep 09 2008 REFERENCES F. S. Roberts, Applied Combinatorics, Prentice-Hall, 1984, p. 256. LINKS G. C. Greubel, Table of n, a(n) for n = 1..2500 H. B. Meyer, Eratosthenes' sieve FORMULA O.g.f.: x*(2 + x + x^3 + 2x^4)/((1+x)*(1-x)^2). - R. J. Mathar, May 23 2008 a(n) = (1/9)*(4*n^3 + 3*n^2 + 1 - Kronecker(-3,n+1)). - Ralf Stephan, Jun 01 2014 From Mikk Heidemaa, Oct 28 2017: (Start) a(n) = floor((41/21 - (3 mod n))^(-3*n+5)) + 3*n - 4 (n > 0). a(n+1) = 3*n - ((n mod 2)+1) mod n (n > 0). (End) MAPLE with(numtheory); P:=proc(q) local n; for n from 1 to q do print((n+1+(-1)^(n+1))*floor(3/(n+1))+6*floor((n-1)/2)+(-1)^n); od; end: P(10^4); # Paolo P. Lava, Mar 20 2014 MATHEMATICA Join[{2, 3}, Select[Table[n, {n, 2, 200}], Mod[#, 2] != 0 && Mod[#, 3] != 0 &]] (* Vladimir Joseph Stephan Orlovsky, Feb 18 2011 *) max = 200; Complement[Range[2, max], 2Range[2, Ceiling[max/2]], 6Range[2, Ceiling[max/6]] + 3] (* Alonso del Arte, May 16 2014 *) Prepend[Table[3*n - Mod[ Mod[n, 2] + 1, n], {n, 1, 999}], 2] (* Mikk Heidemaa, Nov 02 2017 *) PROG (PARI) /* The following PARI program applies to generate all terms besides first one: */ j=[]; for(n=0, 1000, if((floor(sqrt(4!*(n+1) + 1))) == ceil(sqrt(4!*(n+1) + 1)), j=concat(j, floor(sqrt(4!*(n+1) + 1))))); j \\ Alexander R. Povolotsky, Sep 09 2008 CROSSREFS Cf. A004280, A007310, A144065. Sequence in context: A229787 A048380 A048382 * A192489 A161578 A261271 Adjacent sequences:  A038176 A038177 A038178 * A038180 A038181 A038182 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Dec 11 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 20:04 EDT 2019. Contains 328037 sequences. (Running on oeis4.)