

A038096


Number of rooted graphs on n labeled nodes where the root has degree 3.


5



32, 1280, 61440, 4587520, 587202560, 135291469824, 57724360458240, 46443371157258240, 71337018097548656640, 211030752203237270487040, 1210134745434243803880882176, 13518305228996352601898436526080
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

4,1


COMMENTS

The graphs are not necessarily connected. The nodes are labeled.


LINKS

Andrew Howroyd, Table of n, a(n) for n = 4..50


FORMULA

a(n) = n*binomial(n1,3)*2^binomial(n1,2). (There are n choices for the root, binomial(n1,3) choices for the nodes it joined to, and 2^binomial(n1,2) choices for the edges between the nonroot nodes.)


EXAMPLE

For n=4, take 4 nodes labeled a,b,c,d. We can choose the root in 4 ways, say a, and it must be joined to b,c,d. Each of the three edges bc, bd, cd may or may not exist, so there are 4*8 = 32 = a(4) possibilities.


MATHEMATICA

Table[n Binomial[n1, 3] 2^Binomial[n1, 2], {n, 4, 20}] (* Harvey P. Dale, Sep 14 2011 *)


PROG

(PARI) a(n) = {n*binomial(n1, 3)*2^binomial(n1, 2)} \\ Andrew Howroyd, Nov 23 2020


CROSSREFS

Cf. A006125, A038094, A038095, A038097.
Sequence in context: A248072 A247998 A208707 * A278704 A275141 A275036
Adjacent sequences: A038093 A038094 A038095 * A038097 A038098 A038099


KEYWORD

nonn,easy,changed


AUTHOR

Christian G. Bower, Jan 04 1999


EXTENSIONS

Edited by N. J. A. Sloane, Sep 14 2011


STATUS

approved



