login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038055 Number of n-node rooted trees with nodes of 2 colors. 15
2, 4, 14, 52, 214, 916, 4116, 18996, 89894, 433196, 2119904, 10503612, 52594476, 265713532, 1352796790, 6933598208, 35747017596, 185260197772, 964585369012, 5043220350012, 26467146038744, 139375369621960, 736229024863276, 3900074570513316, 20714056652990194 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..1000

L. Foissy, Algebraic structures on typed decorated rooted trees, arXiv:1811.07572 (2018)

R. J. Mathar, Topologically distinct sets of non-intersecting circles in the plane, arXiv:1603.00077 (2016), Table 3.

N. J. A. Sloane, Transforms

Index entries for sequences related to rooted trees

Index entries for sequences related to trees

FORMULA

Shifts left and halves under Euler transform.

a(n) = 2*A000151(n).

a(n) ~ c * d^n / n^(3/2), where d = A245870 = 5.6465426162329497128927135162169138381498..., c = 0.41572319484583484264330698410170337587... . - Vaclav Kotesovec, Sep 11 2014

MAPLE

spec := [N, {N=Prod(bead, Set(N)), bead=Union(R, B), R=Atom, B=Atom}]; [seq(combstruct[count](spec, size=n), n=1..40)];

# second Maple program:

with(numtheory):

a:= proc(n) option remember; `if`(n<2, 2*n, (add(add(d*

      a(d), d=divisors(j))*a(n-j), j=1..n-1))/(n-1))

    end:

seq(a(n), n=1..30);  # Alois P. Heinz, May 11 2014

MATHEMATICA

a[n_] := a[n] = If[n<2, 2*n, (Sum[Sum[d*a[d], {d, Divisors[j]}]*a[n-j], {j, 1, n-1}])/(n-1)]; Table[a[n], {n, 1, 30}] (* Jean-Fran├žois Alcover, Feb 25 2015, after Alois P. Heinz *)

a[1] = 2; a[n_] := a[n] = Sum[k a[k] a[n - m k]/(n-1), {k, n}, {m, (n-1)/k}]; Table[a[n], {n, 30}] (* Vladimir Reshetnikov, Aug 12 2016 *)

PROG

(PARI) seq(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 2/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); 2*A} \\ Andrew Howroyd, May 12 2018

CROSSREFS

Cf. A000081, A038056-A038062.

Cf. A245870.

Sequence in context: A316363 A295760 A129876 * A006385 A183949 A131180

Adjacent sequences:  A038052 A038053 A038054 * A038056 A038057 A038058

KEYWORD

nonn,eigen,nice,easy

AUTHOR

Christian G. Bower, Jan 04 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 16:46 EST 2019. Contains 319335 sequences. (Running on oeis4.)