login
A037705
Base-7 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0,2.
2
1, 10, 70, 492, 3445, 24118, 168826, 1181784, 8272489, 57907426, 405351982, 2837463876, 19862247133, 139035729934, 973250109538, 6812750766768, 47689255367377, 333824787571642, 2336773513001494, 16357414591010460, 114501902137073221, 801513314959512550
OFFSET
1,2
FORMULA
a(n) = 7*a(n-1) + a(n-4) - 7*a(n-5).
From Colin Barker, Dec 24 2015: (Start)
a(n) = 1/200*(25*(-1)^n-(8+6*i)*(-i)^n-(8-6*i)*i^n+41*7^n-50) where i=sqrt(-1).
G.f.: x*(1+3*x+2*x^3) / ((1-x)*(1+x)*(1-7*x)*(1+x^2)).
(End)
PROG
(PARI) Vec(x*(1+3*x+2*x^3)/((1-x)*(1+x)*(1-7*x)*(1+x^2)) + O(x^30)) \\ Colin Barker, Dec 24 2015
CROSSREFS
Sequence in context: A337992 A257114 A037600 * A126505 A038779 A246427
KEYWORD
nonn,base,easy
STATUS
approved