login
Sum{d(i)*6^i: i=0,1,...,m}, where Sum{d(i)*5^i: i=0,1,...,m} is the base 5 representation of n.
15

%I #20 Oct 13 2020 09:01:07

%S 0,1,2,3,4,6,7,8,9,10,12,13,14,15,16,18,19,20,21,22,24,25,26,27,28,36,

%T 37,38,39,40,42,43,44,45,46,48,49,50,51,52,54,55,56,57,58,60,61,62,63,

%U 64,72,73,74,75,76,78,79,80,81,82,84,85,86,87,88,90,91,92,93

%N Sum{d(i)*6^i: i=0,1,...,m}, where Sum{d(i)*5^i: i=0,1,...,m} is the base 5 representation of n.

%C Numbers without digit 5 in base 6. Complement of A333656. - _François Marques_, Oct 13 2020

%H François Marques, <a href="/A037465/b037465.txt">Table of n, a(n) for n = 0..10000</a> (first 1000 terms from Clark Kimberling)

%e a(34)=46 because 34 is 114_5 in base 5 and 114_6=46. - _François Marques_, Oct 13 2020

%t Table[FromDigits[RealDigits[n, 5], 6], {n, 0, 100}] (* _Clark Kimberling_, Aug 14 2012 *)

%o (PARI) a(n) = fromdigits(digits(n, 5), 6); \\ _François Marques_, Oct 13 2020

%Y Cf. Numbers with at least one digit b-1 in base b : A074940 (b=3), A337250 (b=4), A337572 (b=5), A333656 (b=6), A337141 (b=7), A337239 (b=8), A338090 (b=9), A011539 (b=10), A095778 (b=11).

%Y Cf. Numbers with no digit b-1 in base b: A005836 (b=3), A023717 (b=4), A020654 (b=5), this sequence (b=6), A020657 (b=7), A037474 (b=8), A037477 (b=9), A007095 (b=10), A171397 (b=11).

%K nonn,base,easy

%O 0,3

%A _Clark Kimberling_

%E Offset changed to 0 by _Clark Kimberling_, Aug 14 2012