login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037293 a(n) = Sum_{i=0..2^(n-1)} binomial(2^(n-1), i)^2. 7
1, 2, 6, 70, 12870, 601080390, 1832624140942590534, 23951146041928082866135587776380551750, 5768658823449206338089748357862286887740211701975162032608436567264518750790 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..11

N. G. Johansson, Efficient Simulation of the Deutsch-Jozsa Algorithm, Master's Project, Department of Electrical Engineering & Department of Physics, Chemistry and Biology, Linkoping University, April, 2015. See Eq. (3.15).

FORMULA

a(n) = A001405(2^n). - Labos Elemer, Apr 11 2001

a(n) ~ 2^(2^n - n/2 + 1/2)/ sqrt(Pi). - Vaclav Kotesovec, Nov 13 2014

a(n) = A000984(2^(n-1)) = binomial(2^n,2^(n-1)) = (2^n)!/((2^(n-1))!)^2 for n > 0. - Martin Renner, Jan 16 2017

MAPLE

a:= n-> (t-> binomial(t, iquo(t, 2)))(2^n):

seq(a(n), n=0..8);  # Alois P. Heinz, Jan 14 2017

#

a:=n->sum(binomial(2^(n-1), i)^2, i=0..2^(n-1)); seq(a(n), n=0..8);

a:=n->piecewise(n=0, 1, binomial(2^n, 2^(n-1))); seq(a(n), n=0..8); # Martin Renner, Jan 16 2017

MATHEMATICA

Flatten[{1, Table[Binomial[2^n, 2^(n-1)], {n, 1, 8}]}] (* Vaclav Kotesovec, Nov 13 2014 *)

PROG

(PARI) a(n) = sum(i=0, 2^(n-1), binomial(2^(n-1), i)^2)  \\ Michel Marcus, Jun 09 2013

CROSSREFS

Cf. A000079, A000984, A001405.

Sequence in context: A244494 A136268 A030242 * A129785 A000896 A103527

Adjacent sequences:  A037290 A037291 A037292 * A037294 A037295 A037296

KEYWORD

nonn,easy

AUTHOR

John Tromp, Dec 11 1999

EXTENSIONS

More terms from Erich Friedman

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 26 20:42 EDT 2019. Contains 321534 sequences. (Running on oeis4.)