|
|
A037271
|
|
Number of steps to reach a prime under "replace n with concatenation of its prime factors" when applied to n-th composite number, or -1 if no such number.
|
|
23
|
|
|
2, 1, 13, 2, 4, 1, 5, 4, 4, 1, 15, 1, 1, 2, 3, 4, 4, 1, 2, 2, 1, 5, 3, 2, 2, 1, 9, 2, 9, 6, 1, 15
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(33) is presently unknown: starting with 49, no prime has been reached after 110 steps. See A037274 for the latest information.
|
|
LINKS
|
Table of n, a(n) for n=1..32.
P. De Geest, Home Primes
M. Herman and J. Schiffman, Investigating home primes and their families, Math. Teacher, 107 (No. 8, 2014), 606-614.
Eric Weisstein's World of Mathematics, Home Prime
|
|
EXAMPLE
|
Starting with 14 (the seventh composite number) we get 14=2*7, 27=3*3*3, 333=3*3*37, 3337=47*71, 4771=13*367, 13367 is prime; so a(7)=5.
|
|
MATHEMATICA
|
maxComposite = 49; maxIter = 40; concat[n_] := FromDigits[ Flatten[ IntegerDigits /@ Flatten[ Apply[ Table, {#[[1]], {#[[2]]}} & /@ FactorInteger[n], {1}]]]]; composites = Select[ Range[2, maxComposite], ! PrimeQ[#] &]; a[n_] := ( lst = NestWhileList[ concat, composites[[n]], ! PrimeQ[#] &, 1, maxIter]; If[PrimeQ[ Last[lst]], Length[lst] - 1, - 1]); Table[a[n], {n, 1, Length[composites]}] (* Jean-François Alcover, Jul 10 2012 *)
|
|
PROG
|
(Haskell)
a037271 = length . takeWhile ((== 0) . a010051'') .
iterate a037276 . a002808
-- Reinhard Zumkeller, Apr 03 2012
|
|
CROSSREFS
|
Cf. A037272, A037273, A037274, A056938, A002808, A037276, A027746, A230305.
Sequence in context: A258821 A124916 A007418 * A074955 A245625 A292947
Adjacent sequences: A037268 A037269 A037270 * A037272 A037273 A037274
|
|
KEYWORD
|
nonn,nice,base,more,hard
|
|
AUTHOR
|
Jeff Burch
|
|
STATUS
|
approved
|
|
|
|