login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037268 Sum of reciprocals of digits = 1. 8
1, 22, 236, 244, 263, 326, 333, 362, 424, 442, 623, 632, 2488, 2666, 2848, 2884, 3366, 3446, 3464, 3636, 3644, 3663, 4288, 4346, 4364, 4436, 4444, 4463, 4634, 4643, 4828, 4882, 6266, 6336, 6344, 6363, 6434, 6443, 6626, 6633, 6662, 8248, 8284, 8428, 8482, 8824 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This sequence has 1209 terms.

Intersection of A037264 and A034708: A214949(a(n))*A214950(a(n))*A168046(a(n)) = 1. - Reinhard Zumkeller, Aug 02 2012

LINKS

Nathaniel Johnston, Table of n, a(n) for n = 1..1209 (full sequence)

MAPLE

A037268 := proc(n) option remember: local d, k: if(n=1)then return 1: fi: for k from procname(n-1)+1 do d:=convert(k, base, 10): if(not member(0, d) and add(1/d[j], j=1..nops(d))=1)then return k: fi: od: end: seq(A037268(n), n=1..50); # Nathaniel Johnston, May 28 2011

PROG

(Haskell)

a037268 n = a037268_list !! (n-1)

a037268_list = filter ((== 1) . a168046) $

                      takeWhile (<= 999999999) a214959_list

-- Reinhard Zumkeller, Aug 02 2012

(PARI) lista(nn) = {for (n=1, nn, d = digits(n); if (vecmin(d) && (sum(k=1, #d, 1/d[k])==1), print1(n, ", ")); ); } \\ Michel Marcus, Jul 06 2015

CROSSREFS

Cf. A020473, A037264, A038034.

Subsequence of A214959.

Sequence in context: A022617 A082205 A003205 * A091783 A213072 A159649

Adjacent sequences:  A037265 A037266 A037267 * A037269 A037270 A037271

KEYWORD

easy,nonn,base,fini,full

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Christian G. Bower, Jun 15 1998

Two missing terms inserted by Nathaniel Johnston, May 28 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 28 03:08 EDT 2017. Contains 288813 sequences.