

A037239


Numerator of Pi^(2n)/(GAMMA(2n)*(12^(2n))*Zeta(2n)); = 8*(highest power of 2 dividing n).


2



8, 16, 8, 32, 8, 16, 8, 64, 8, 16, 8, 32, 8, 16, 8, 128, 8, 16, 8, 32, 8, 16, 8, 64, 8, 16, 8, 32, 8, 16, 8, 256, 8, 16, 8, 32, 8, 16, 8, 64, 8, 16, 8, 32, 8, 16, 8, 128, 8, 16, 8, 32, 8, 16, 8, 64, 8, 16, 8, 32, 8, 16, 8, 512, 8, 16, 8, 32, 8, 16, 8, 64, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..16384
Harvey Cohn, Some elementary aspects of modular functions in several variables, Bull. Amer. Math. Soc. 71 (1965), 681704, (esp. p. 688).


MAPLE

with(numtheory): for n from 1 to 200 do if n mod 2 = 1 then printf(`%d, `, 8) else printf(`%d, `, 8*2^ifactors(n)[2][1][2]) fi; od:
seq(2^(3+padic[ordp](n, 2)), n=1..73); # Peter Luschny, Apr 03 2014


MATHEMATICA

a[n_] := 8*BitAnd[n, n]; Table[a[n], {n, 1, 81}] (* JeanFrançois Alcover, Sep 20 2011, after Joerg Arndt *)


PROG

(PARI) a(n)=if(n<1, 0, 8*2^valuation(n, 2))
(MAGMA) [2^(3 + Valuation(n, 2)): n in [1..80]]; // G. C. Greubel, Nov 01 2018


CROSSREFS

Equals 8*A006519. Denominators given by A002425.
Sequence in context: A053321 A299214 A174256 * A205869 A217178 A103699
Adjacent sequences: A037236 A037237 A037238 * A037240 A037241 A037242


KEYWORD

nonn,frac,easy


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms from James A. Sellers, Jun 20 2000


STATUS

approved



