login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037237 Expansion of (3 + x^2) / (1 - x)^4. 3
3, 12, 31, 64, 115, 188, 287, 416, 579, 780, 1023, 1312, 1651, 2044, 2495, 3008, 3587, 4236, 4959, 5760, 6643, 7612, 8671, 9824, 11075, 12428, 13887, 15456, 17139, 18940, 20863, 22912, 25091, 27404 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

This sequence is the partial sums of A058331. - J. M. Bergot, May 31 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1)

FORMULA

a(n) = Sum_{k=0..n} (2*(k+1)^2 + 1). - Mike Warburton (mikewarb(AT)gmail.com), Jul 07 2007, Sep 07 2007

a(n) = (n+1)*(2*n^2 + 7*n + 9)/3. - R. J. Mathar, Mar 29 2010

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 21 2012

E.g.f.: (1/3)*(9 + 27*x + 15*x^2 + 2*x^3)*exp(x). - G. C. Greubel, Jul 22 2017

MATHEMATICA

CoefficientList[Series[(3+x^2)/(1-x)^4, {x, 0, 50}], x]  (* Harvey P. Dale, Mar 06 2011 *)

LinearRecurrence[{4, -6, 4, -1}, {3, 12, 31, 64}, 40] (* Vincenzo Librandi Jun 21 2012 *)

PROG

(MAGMA) I:=[3, 12, 31, 64]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)- Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 21 2012

(PARI) x='x+O('x^50); Vec((3+x^2)/(1-x)^4) \\ G. C. Greubel, Jul 22 2017

CROSSREFS

Sequence in context: A131936 A009135 A131740 * A005718 A199231 A098500

Adjacent sequences:  A037234 A037235 A037236 * A037238 A037239 A037240

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 13:57 EST 2017. Contains 295877 sequences.