login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037237 Expansion of (3 + x^2) / (1 - x)^4. 3
3, 12, 31, 64, 115, 188, 287, 416, 579, 780, 1023, 1312, 1651, 2044, 2495, 3008, 3587, 4236, 4959, 5760, 6643, 7612, 8671, 9824, 11075, 12428, 13887, 15456, 17139, 18940, 20863, 22912, 25091, 27404 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

This sequence is the partial sums of A058331. - J. M. Bergot, May 31 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1)

FORMULA

a(n) = Sum_{k=0..n} (2*(k+1)^2 + 1). - Mike Warburton (mikewarb(AT)gmail.com), Jul 07 2007, Sep 07 2007

a(n) = (n+1)*(2*n^2 + 7*n + 9)/3. - R. J. Mathar, Mar 29 2010

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 21 2012

E.g.f.: (1/3)*(9 + 27*x + 15*x^2 + 2*x^3)*exp(x). - G. C. Greubel, Jul 22 2017

MATHEMATICA

CoefficientList[Series[(3+x^2)/(1-x)^4, {x, 0, 50}], x]  (* Harvey P. Dale, Mar 06 2011 *)

LinearRecurrence[{4, -6, 4, -1}, {3, 12, 31, 64}, 40] (* Vincenzo Librandi Jun 21 2012 *)

PROG

(MAGMA) I:=[3, 12, 31, 64]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)- Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 21 2012

(PARI) x='x+O('x^50); Vec((3+x^2)/(1-x)^4) \\ G. C. Greubel, Jul 22 2017

CROSSREFS

Sequence in context: A131936 A009135 A131740 * A005718 A199231 A098500

Adjacent sequences:  A037234 A037235 A037236 * A037238 A037239 A037240

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 10:48 EST 2018. Contains 318049 sequences. (Running on oeis4.)