%I #32 Aug 03 2017 01:27:17
%S 5,8,19,26,67,80
%N Order of (4,n) cage, i.e., minimal order of 4-regular graph of girth n.
%C a(9) <= 275, a(10) <= 384, a(12) = 728. - From Royle's page via _Jason Kimberley_, Dec 26 2012
%H Andries E. Brouwer, <a href="http://www.win.tue.nl/~aeb/graphs/cages/cages.html">Cages</a>
%H Geoff Exoo, <a href="http://ginger.indstate.edu/ge/CAGES">Regular graphs of given degree and girth</a>
%H G. Exoo and R. Jajcay, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS16">Dynamic cage survey</a>, Electr. J. Combin. (2008, 2011).
%H Gordon Royle, <a href="http://staffhome.ecm.uwa.edu.au/~00013890/remote/cages/allcages.html">Cages of higher valency</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CageGraph.html">Cage Graph</a> (claims too much)
%F a(n) >= A062318(n+1). - _Jason Kimberley_, Dec 21 2012
%Y Orders of cages: A054760 (n,k), A000066 (3,n), this sequence (4,n), A218553 (5,n), A218554 (6,n), A218555 (7,n), A191595 (n,5).
%K hard,nonn
%O 3,1
%A _Erich Friedman_
%E Extended by _Jason Kimberley_, Apr 25 2010