login
A037169
a(n) = prime(n) * Product_{k=0..n-2} prime(n-k) mod prime(n-k-1).
1
2, 3, 10, 28, 176, 416, 2176, 4864, 23552, 178176, 380928, 2727936, 12091392, 25362432, 110886912, 750256128, 5011144704, 10362028032, 68287463424, 289457307648, 595222069248, 3864866586624, 16242224136192, 104498164924416, 911130067206144, 3794809764446208, 7739909024514048
OFFSET
1,1
COMMENTS
If A_n is the n X n matrix a(i,j)=min(prime(i), prime(j)) then det(M_n)/det(A_n)=prime(n)/2.
FORMULA
Let M_n be the n X n matrix m(i, j)=Max(prime(i), prime(j)); then a(n)=(-1)^(n+1)*det(M_n). - Benoit Cloitre, May 11 2002
MATHEMATICA
Table[Prime[n]Product[Mod[Prime[n-k], Prime[n-k-1]], {k, 0, n-2}], {n, 30}] (* Harvey P. Dale, Jul 16 2017 *)
PROG
(PARI) a(n) = prime(n)*prod(k=0, n-2, prime(n-k) % prime(n-k-1)); \\ Michel Marcus, Aug 13 2022
CROSSREFS
Sequence in context: A298083 A099435 A140453 * A058953 A160909 A004980
KEYWORD
easy,nonn
AUTHOR
Armand Turpel (armandt(AT)unforgettable.com)
EXTENSIONS
Corrected and extended by Larry Reeves (larryr(AT)acm.org), Sep 27 2000
More terms from Michel Marcus, Aug 13 2022
STATUS
approved