login
A037168
a(n) = 2*prime(n) - 2.
3
2, 4, 8, 12, 20, 24, 32, 36, 44, 56, 60, 72, 80, 84, 92, 104, 116, 120, 132, 140, 144, 156, 164, 176, 192, 200, 204, 212, 216, 224, 252, 260, 272, 276, 296, 300, 312, 324, 332, 344, 356, 360, 380, 384, 392, 396, 420, 444, 452, 456
OFFSET
1,1
COMMENTS
Original definition: Prime(n)+ Sum(prime(n-z) mod prime(n-z-1)); z=0,1...n-2 ; with offset 2.
Since prime(n+1) < 2*prime(n) for all n, the "mod" in the sum is equivalent to "-", making it telescopic and equal to prime(n)-2. - M. F. Hasler, Jun 29 2013
LINKS
Barry Brent, On the Constant Terms of Certain Laurent Series, Preprints (2023) 2023061164.
FORMULA
a(n) = 2 * prime(n) - 2 = 2 * phi(prime(n)). - Alonso del Arte, Jun 30 2013
a(n) = 2 * A006093(n). - Ray Chandler, Jun 30 2013
a(n) = A000010(A000040(n)) - A023900(A000040(n)). - Torlach Rush, Mar 11 2018
EXAMPLE
a(3) = 8 since the third prime is 5 and 2 * 5 - 2 = 8.
MATHEMATICA
2Prime[Range[50]] - 2 (* Alonso del Arte, Jun 30 2013 *)
PROG
(PARI) A037168 = n->prime(n)*2-2 \\ M. F. Hasler, Jun 29 2013
(Magma) [2*p-2: p in PrimesUpTo(300)]; // Vincenzo Librandi, Mar 19 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Armand Turpel (armandt(AT)unforgettable.com)
EXTENSIONS
Definition simplified and extended to n=1, following a suggestion from Alonso del Arte, by M. F. Hasler, Jun 29 2013
STATUS
approved