login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037165 a(n) = prime(n)*prime(n+1) - prime(n) - prime(n+1). 25
1, 7, 23, 59, 119, 191, 287, 395, 615, 839, 1079, 1439, 1679, 1931, 2391, 3015, 3479, 3959, 4619, 5039, 5615, 6395, 7215, 8447, 9599, 10199, 10811, 11447, 12095, 14111, 16379, 17679, 18767, 20423, 22199, 23399, 25271, 26891, 28551, 30615, 32039 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) is also the Frobenius number of the numerical semigroup generated by prime(n) and prime(n+1). - Victoria A Sapko (vsapko(AT)math.unl.edu), Feb 21 2001

LINKS

Joshua Oliver, Table of n, a(n) for n = 1..2000 (first 1000 terms from Vincenzo Librandi)

R. Froberg, C. Gottlieb and R. Haggkvist, On numerical semigroups, Semigroup Forum, 35 (1987), 63-83 (for definition of Frobenius number).

FORMULA

a(n) = A006094(n) - A001043(n). - Michel Marcus, Mar 02 2019

MATHEMATICA

f[n_] := FrobeniusNumber[{Prime[n], Prime[n + 1]}]; Array[f, 41] (* Robert G. Wilson v, Aug 04 2012 *)

Times@@#-Total[#]&/@Partition[Prime[Range[50]], 2, 1] (* Harvey P. Dale, Dec 27 2015 *)

PROG

(MAGMA) [NthPrime(n)*NthPrime(n+1)-NthPrime(n)-NthPrime(n+1): n in [1..45]]; // Vincenzo Librandi, Dec 18 2012

(PARI) a(n)=my(p=prime(n), q=nextprime(p+1)); p*q-p-q \\ Charles R Greathouse IV, Apr 28 2015

CROSSREFS

Cf. A001043, A006094.

Sequence in context: A058195 A213770 A235683 * A126284 A140096 A096345

Adjacent sequences:  A037162 A037163 A037164 * A037166 A037167 A037168

KEYWORD

nonn,easy

AUTHOR

Armand Turpel (armandt(AT)unforgettable.com)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 09:51 EST 2019. Contains 329111 sequences. (Running on oeis4.)