%I #17 Aug 08 2019 18:36:10
%S 1,0,1,1,2,2,4,3,6,6,9,9,14,13,19,20,26,27,36,36,47,49,60,63,78,80,97,
%T 102,120,126,149,154,180,189,216,227,260,270,307,322,361,378,424,441,
%U 492,515,568,594,656,682,750
%N Expansion of 1/((1-x^2)(1-x^3)...(1-x^6)).
%C Also, Molien series for invariants of finite Coxeter group A_5. The Molien series for the finite Coxeter group of type A_k (k >= 1) has G.f. = 1/Prod_{i=2..k+1} (1-x^i). - _N. J. A. Sloane_, Jan 11 2016
%D J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
%H <a href="/index/Rec#order_20">Index entries for linear recurrences with constant coefficients</a>, signature (0, 1, 1, 1, 0, 0, -2, -2, -1, 0, 1, 2, 2, 0, 0, -1, -1, -1, 0, 1).
%t CoefficientList[Series[1/Times@@Table[(1-x^n),{n,2,6}],{x,0,50}],x] (* _Harvey P. Dale_, Dec 25 2012 *)
%Y Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.
%Y Cf. A001402 (partial sums).
%K nonn,easy
%O 0,5
%A _N. J. A. Sloane_.