

A037095


"Sloping binary representation" of powers of 3 (A000244), slope = 1.


5



1, 1, 3, 1, 3, 9, 11, 17, 19, 25, 123, 65, 195, 169, 171, 753, 435, 249, 2267, 4065, 8163, 841, 843, 31313, 29651
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS

Table of n, a(n) for n=0..24.


FORMULA

a(n) := Sum(bit_n(A000244(ni), i)*(2^i), i=0..(n1)) [ bit_n := (x, n) > `mod`(floor(x/(2^n)), 2); ]


EXAMPLE

When powers of 3 are written in binary (see A004656), under each other as:
000000000001 (1)
000000000011 (3)
000000001001 (9)
000000011011 (27)
000001010001 (81)
000011110011 (243)
001011011001 (729)
100010001011 (2187)
and one collects their bits from the column0 to NWdirection (from the least to the most significant end), one gets 1 (1), 01 (1), 011 (3), 0001 (1), 00011 (3), 001001 (9), etc. (See A105033 for similar transformation done on nonnegative integers).


CROSSREFS

Cf. A105033, A000244, A037093A037094, A037096A037097.
Sequence in context: A265307 A133579 A088442 * A160654 A146436 A058842
Adjacent sequences: A037092 A037093 A037094 * A037096 A037097 A037098


KEYWORD

nonn,base


AUTHOR

Antti Karttunen, Jan 28 1999. Entry revised Dec 29 2007.


STATUS

approved



