login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037093 "Sloping binary representation" of Fibonacci numbers, slope = +1. 7
0, 1, 3, 14, 57, 229, 916, 7761, 29567, 117474, 469113, 3973641, 15138352, 60146777, 240187355, 2070207870, 7733090689, 30791909229, 260408711716, 991495872825, 3942106110215, 15739612088946, 133333733918417 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..22.

FORMULA

a(n) := Sum(bit_n(A000045(n+i), i)*(2^i), i=0..inf) [ bit_n := (x, n) -> `mod`(floor(x/(2^n)), 2); ]

In practice, n can be used as an upper limit instead of infinity.

EXAMPLE

When Fibonacci numbers are written in binary (see A004685), under each other as:

0000000 (0)

0000001 (1)

0000001 (1)

0000010 (2)

0000011 (3)

0000101 (5)

0001000 (8)

0001101 (13)

0010101 (21)

0100010 (34)

0110111 (55)

1011001 (89)

and one starts collecting their bits from column-0 to SW-direction (from the least to the most significant end), one gets 000... (0), ...00001 (1), ...00011 (3), ...001110 (14), etc. (See A102370 for similar transformation done on nonnegative integers).

CROSSREFS

Same sequence in octal: A037098. Cf. also: A102370, A000045, A037094-A037095, A036284.

Sequence in context: A111468 A052412 A037793 * A135926 A015523 A127363

Adjacent sequences:  A037090 A037091 A037092 * A037094 A037095 A037096

KEYWORD

nonn,base

AUTHOR

Antti Karttunen, Jan 28 1999. Entry revised Dec 29 2007.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 21:15 EST 2017. Contains 295919 sequences.