login
Lexicographically earliest strictly increasing base 3 autovarious sequence: a(n) = number of distinct a(k) mod 3^n (written in base 3).
1

%I #6 Apr 04 2015 21:46:56

%S 1,2,11,12,101,1001,1002,1011,1012,1101,10001,10002,10011,10012,10101,

%T 11001,11002,11011,11012,11101,20001,20002,20011,20012,20101,21001,

%U 21002,21011,100001,1000001,1000002,10000001,100000001,100000002

%N Lexicographically earliest strictly increasing base 3 autovarious sequence: a(n) = number of distinct a(k) mod 3^n (written in base 3).

%C The first a(n) elements include all a(n) residues mod 3^n.

%Y Cf. A037090.

%K nonn,base

%O 0,2

%A _David W. Wilson_