

A037084


Positive integers not going to 1 under iterations of the map in A001281: n>3n1 if n odd, n>n/2 if n even.


12



5, 7, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 25, 26, 27, 28, 31, 33, 34, 35, 36, 37, 38, 40, 41, 42, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 61, 62, 63, 66, 67, 68, 70, 72, 73, 74, 75, 76, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 98, 99, 100, 102
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Up to at least 100000000, every number reaches 1, 5 or 17.
Conjecture : for any x, the iterated process "x >3x1" if x is odd or "x >x/2" if x is even leads to one of the following three cycles: (1, 2), (5, 14, 7, 20, 10), (41, 122, 61, 182, 91, 272, 136, 68, 34, 17, 50, 25, 74, 37, 110, 55, 164, 82).  Benoit Cloitre, May 14 2002
Complement (in N*) of A039500 ; union of A039501 and A039502 (conjectured).  M. F. Hasler, Nov 26 2007
Equivalent to the Collatz ('3n+1') problem for negative integers.  Dmitry Kamenetsky, Jan 12 2017


LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..20000


EXAMPLE

Iterations of f starting at 3 are 3,8,4,2,1  thus 3 is not in the sequence.
Iterations starting at 5 are 5,14,7,20,10,5 periodic and 1 is not among these values, so 5 is in the sequence.


MATHEMATICA

colln[n_]:= NestWhile[If[EvenQ[#], #/2, 3#1] &, n, FreeQ[{1, 5, 17}, #] &]; Select[Range[102], colln[#] != 1 &] (* Jayanta Basu, Jun 06 2013 *)


PROG

(PARI) A037084( end=999, n=0 /*starting value 1 */)={ for( i=n, end, n=i; while( n > 17  n > 5 && n < 17, if( n%2, n=3*n1, n>>=1)); if( n > 4, print1(i", ")))} \\ M. F. Hasler, Nov 26 2007


CROSSREFS

Cf. A001281, A039500A039505.
Cf. A006370, A006577 (Collatz problem: 3n+1).
Sequence in context: A138892 A190202 A005523 * A018935 A039501 A114255
Adjacent sequences: A037081 A037082 A037083 * A037085 A037086 A037087


KEYWORD

nonn,easy


AUTHOR

Robert W. Craigen (craigen(AT)fresno.edu)


EXTENSIONS

More terms from Christian G. Bower, Feb 15 1999
Edited by M. F. Hasler, Nov 26 2007


STATUS

approved



