login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037055 Smallest prime containing exactly n 1's. 16
2, 13, 11, 1117, 10111, 101111, 1111151, 11110111, 101111111, 1111111121, 11111111113, 101111111111, 1111111118111, 11111111111411, 111111111116111, 1111111111111181, 11111111101111111, 101111111111111111, 1111111111111111171, 1111111111111111111, 111111111111111119111 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

For n > 1, A037055 is conjectured to be identical to A084673. - Robert G. Wilson v, Jul 04 2003

a(n) =  A002275(n) for n in A004023.  For all other n < 900, a(n) has n+1 digits. - Robert Israel, Feb 21 2016

LINKS

Robert Israel, Table of n, a(n) for n = 0..900

FORMULA

a(n) = the smallest prime in { R-10^n, R-10^(n-1), ..., R-10; R+a*10^b, a=1, ..., 8, b=0, 1, 2, ..., n }, where R = (10^(n+1)-1)/9 is the (n+1)-digit repunit. - M. F. Hasler, Feb 25 2016

MAPLE

f:= proc(n) local m, d, r, x;

   r:= (10^n-1)/9;

   if isprime(r) then return r fi;

   r:= (10^(n+1)-1)/9;

   for m from n-1 to 1 by -1 do

     x:= r - 10^m;

     if isprime(x) then return x fi;

   od;

   for m from 0 to n do

     for d from 1 to 8 do

        x:= r + d*10^m;

        if isprime(x) then return x fi;

     od

   od;

   error("Needs more than n+1 digits")

end proc:

map(f, [$0..100]); # Robert Israel, Feb 21 2016

MATHEMATICA

f[n_, b_] := Block[{k = 10^(n + 1), p = Permutations[ Join[ Table[b, {i, 1, n}], {x}]], c = Complement[Table[j, {j, 0, 9}], {b}], q = {}}, Do[q = Append[q, Replace[p, x -> c[[i]], 2]], {i, 1, 9}]; r = Min[ Select[ FromDigits /@ Flatten[q, 1], PrimeQ[ # ] & ]]; If[r ? Infinity, r, p = Permutations[ Join[ Table[ b, {i, 1, n}], {x, y}]]; q = {}; Do[q = Append[q, Replace[p, {x -> c[[i]], y -> c[[j]]}, 2]], {i, 1, 9}, {j, 1, 9}]; Min[ Select[ FromDigits /@ Flatten[q, 1], PrimeQ[ # ] & ]]]]; Table[ f[n, 1], {n, 1, 18}]

Join[{2, 13}, Table[Sort[Flatten[Table[Select[FromDigits/@Permutations[Join[{n}, PadRight[{}, i, 1]]], PrimeQ], {n, 0, 9}]]][[1]], {i, 2, 20}]] (* Vincenzo Librandi, May 11 2017 *)

PROG

(PARI) A037055(n)={my(p, t=10^(n+1)\9); forstep(k=n+1, 1, -1, ispseudoprime(p=t-10^k) && return(p)); forvec(v=[[0, n], [1, 8]], ispseudoprime(p=t+10^v[1]*v[2]) && return(p))} \\ M. F. Hasler, Feb 22 2016

CROSSREFS

Cf. A084673, A065584, A065821, A037054, A034388, A036507-A036536.

Cf. A037053, A037057, A037059, A037061, A037063, A037065, A037067, A037069, A037071.

Sequence in context: A213307 A213305 A002591 * A065584 A153651 A229908

Adjacent sequences:  A037052 A037053 A037054 * A037056 A037057 A037058

KEYWORD

nonn,base

AUTHOR

Patrick De Geest, Jan 04 1999

EXTENSIONS

More terms from Sascha Kurz, Feb 10 2003

Edited by Robert G. Wilson v, Jul 04 2003

a(0) = 2 inserted by Robert Israel, Feb 21 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 20:00 EST 2019. Contains 330000 sequences. (Running on oeis4.)