login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036988 Has simplest possible tree complexity of all transcendental sequences. 5
1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000

H. Niederreiter and M. Vielhaber, Tree complexity and a doubly exponential gap between structured and random sequences, J. Complexity, 12 (1996), 187-198.

FORMULA

a(n) = 1 iff, in the binary expansion of n, reading from right to left, the number of 1's never exceeds the number of 0's.

a(n) = A063524(A036989(n)). - Reinhard Zumkeller, Jul 31 2013

MATHEMATICA

(* b = A036989 *) b[0] = 1; b[n_?EvenQ] := b[n] = Max[b[n/2] - 1, 1]; b[n_] := b[n] = b[(n-1)/2] + 1; a[n_] := Boole[b[n] == 1]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Nov 05 2013, after Reinhard Zumkeller *)

PROG

(Haskell)

a036988 = a063524 . a036989  -- Reinhard Zumkeller, Jul 31 2013

CROSSREFS

Cf. A036989. Characteristic function of A036990.

Sequence in context: A284957 A316533 A085405 * A108357 A088517 A040053

Adjacent sequences:  A036985 A036986 A036987 * A036989 A036990 A036991

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Larry Reeves (larryr(AT)acm.org), Sep 25 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 16:32 EST 2019. Contains 319309 sequences. (Running on oeis4.)