login
Number of covariants in Hilbert basis for binary forms of degree n.
6

%I #18 Nov 04 2023 13:46:43

%S 2,4,5,23,26,147,69,476,510

%N Number of covariants in Hilbert basis for binary forms of degree n.

%D P. J. Olver, Classical Invariant Theory, Cambridge Univ. Press, p. 40.

%H Leonid Bedratyuk, <a href="https://arxiv.org/abs/math/0612113">On complete system of covariants for the binary form of degree 8</a>, arXiv:math/0612113 [math.AG], 2006.

%H Leonid Bedratyuk, <a href="https://doi.org/10.1016/j.jsc.2008.10.001">A complete minimal system of covariants for the binary form of degree 7</a>, J. Symb. Comp. 44, No. 2, 211-220, 2009.

%H Leonid Bedratyuk and S. L. Bedratyuk, <a href="http://journals.iapmm.lviv.ua/ojs/index.php/MBSSS/article/view/89/83">A complete system of covariants for the binary form of the eighth degree</a>, Mathematical Bulletin of the Shevchenko Scientific Society, 5, 11-22, 2008 [in Ukrainian]. Also sometimes referenced as "A complete minimal system of covariants for the binary form of degree 8".

%H Reynald Lercier and Marc Olive, Covariant algebra of the binary nonic and the binary decimic, in: <a href="https://doi.org/10.1090/conm/686">Arithmetic, Geometry, Cryptography and Coding Theory</a>, AMS, 2017; arXiv:<a href="https://arxiv.org/abs/1509.08749">1509.08749</a> [math.AG], 2015.

%Y Cf. A036983.

%K nonn,nice,more

%O 2,1

%A _N. J. A. Sloane_

%E Corrected and extended by _Leonid Bedratyuk_, Aug 24 2010

%E a(9)-a(10) from Lercier & Olive added by _Andrey Zabolotskiy_, Nov 04 2023