

A036983


Number of invariants in Hilbert basis for binary forms of degree n.


5




OFFSET

2,4


COMMENTS

Extending this is related to a "gorgeous open question of great antiquity" [Towber].


REFERENCES

Roe Goodman and Nolan R. Wallach, Representations and invariants of the classical groups, Cambridge Univ. Press, Cambridge, 1998
P. J. Olver, Classical Invariant Theory, Cambridge Univ. Press, p. 40.


LINKS

Table of n, a(n) for n=2..11.
A. E. Brouwer and M. Popoviciu, The invariants of the binary nonic, J. Symb. Comput. 45 (2010) 709720.
A. E. Brouwer and M. Popoviciu, The invariants of the binary decimic, J. Symb. Comput. 45 (2010) 837843.
J. Towber, Review of "Representations and Invariants of the Classical Groups" by Roe Goodman and Nolan R. Wallach, Bull. Amer. Math. Soc., 36 (1999), 533538.


CROSSREFS

Cf. A036984.
Sequence in context: A179133 A199929 A126666 * A154775 A210418 A167454
Adjacent sequences: A036980 A036981 A036982 * A036984 A036985 A036986


KEYWORD

nonn,nice,hard,more


AUTHOR

N. J. A. Sloane


EXTENSIONS

a(10)a(11) from Andries E. Brouwer, Feb 17 2015


STATUS

approved



