login
A036889
Number of partitions of 5n such that cn(1,5) = cn(4,5) <= cn(0,5) = cn(2,5) = cn(3,5).
8
0, 1, 4, 12, 29, 66, 137, 279, 546, 1057, 2000, 3746, 6886, 12508, 22360, 39477, 68736, 118309, 201207, 338672, 564211, 931342, 1523628, 2472228, 3979651, 6359094, 10088975, 15899507, 24894711, 38740189, 59929503, 92185390, 141029958, 214628608
OFFSET
1,3
COMMENTS
Alternatively, number of partitions of 5n such that cn(2,5) = cn(3,5) <= cn(0,5) = cn(1,5) = cn(4,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
FORMULA
a(n) = A036882(n) - A036887(n)
a(n) = A036881(n) - A036885(n)
a(n) = A046776(n) + A036892(n)
CROSSREFS
Sequence in context: A192978 A260546 A062421 * A036895 A309297 A296645
KEYWORD
nonn
EXTENSIONS
Terms a(10) onward from Max Alekseyev, Dec 11 2011
STATUS
approved