login
A036887
Number of partitions of 5n such that cn(1,5) = cn(4,5) <= cn(2,5) = cn(3,5) < cn(0,5).
5
1, 2, 4, 10, 25, 62, 145, 323, 689, 1417, 2831, 5517, 10532, 19734, 36377, 66042, 118240, 208929, 364689, 629238, 1073964, 1814246, 3035236, 5031509, 8268583, 13476606, 21793642, 34981783, 55753411, 88258773, 138813831, 216978085, 337147547
OFFSET
1,2
COMMENTS
Alternatively, number of partitions of 5n such that cn(2,5) = cn(3,5) <= cn(1,5) = cn(4,5) < cn(0,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
FORMULA
a(n) = A036882(n) - A036889(n)
a(n) = A202086(n) + A036895(n)
CROSSREFS
Sequence in context: A000458 A089928 A173610 * A307578 A151536 A026269
KEYWORD
nonn
EXTENSIONS
Terms a(10) onward from Max Alekseyev, Dec 10 2011
STATUS
approved