login
A036884
Number of partitions of 5n such that cn(0,5) = cn(1,5) = cn(4,5) <= cn(2,5) = cn(3,5).
7
1, 3, 7, 18, 42, 97, 207, 431, 861, 1685, 3216, 6042, 11139, 20248, 36245, 64041, 111663, 192432, 327803, 552593, 922129, 1524496, 2497868, 4058745, 6542497, 10467325, 16626651, 26231148, 41114412, 64042922, 99164091, 152671363, 233762167
OFFSET
1,2
COMMENTS
Alternatively, number of partitions of 5n such that cn(0,5) = cn(2,5) = cn(3,5) <= cn(1,5) = cn(4,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
FORMULA
a(n) = A036880(n) - A036888(n)
a(n) = A046776(n) + A036886(n)
a(n) = A036881(n) - A036890(n)
CROSSREFS
Sequence in context: A305652 A356938 A208771 * A102291 A034691 A317546
KEYWORD
nonn
EXTENSIONS
Terms a(10) onward from Max Alekseyev, Dec 10 2011
STATUS
approved