login
Number of partitions of n such that cn(0,5) = cn(1,5) < cn(3,5) < cn(2,5) = cn(4,5).
0

%I #10 Dec 01 2013 23:38:53

%S 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,3,1,0,0,1,8,3,1,0,3,18,8,3,2,9,

%T 38,20,8,6,24,77,44,21,17,56,157,93,49,44,122,314,193,108,104,258,620,

%U 388,232,230,523,1209,765,480,492,1036,2311,1486,967,1008,2010,4340,2831,1908,2009,3822,8008,5307,3679

%N Number of partitions of n such that cn(0,5) = cn(1,5) < cn(3,5) < cn(2,5) = cn(4,5).

%C Also, number of partitions of n such that cn(2,5) = cn(4,5) < cn(3,5) < cn(0,5) = cn(1,5).

%C For a given partition, cn(i,n) means the number of its parts equal to i modulo n.

%H <a href="http://oeis.org/wiki/Partitions_with_restricted_parts_modulo_5">Partitions with restricted parts modulo 5</a>

%K nonn

%O 1,20

%A _Olivier GĂ©rard_

%E Edited and extended by _Max Alekseyev_, Dec 01 2013