login
Number of partitions of n such that cn(0,5) = cn(1,5) < cn(2,5) = cn(4,5) < cn(3,5).
0

%I #10 Dec 01 2013 23:36:48

%S 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,3,1,0,3,2,7,3,2,7,6,16,7,6,18,16,33,

%T 18,16,39,39,68,40,40,84,87,142,87,91,179,184,292,187,196,372,383,591,

%U 389,416,754,769,1180,791,848,1508,1517,2297,1583,1692,2936,2943,4377,3091,3309,5606,5605,8185,5917,6342

%N Number of partitions of n such that cn(0,5) = cn(1,5) < cn(2,5) = cn(4,5) < cn(3,5).

%C Also, number of partitions of n such that cn(2,5) = cn(4,5) < cn(0,5) = cn(1,5) < cn(3,5).

%C For a given partition, cn(i,n) means the number of its parts equal to i modulo n.

%H <a href="http://oeis.org/wiki/Partitions_with_restricted_parts_modulo_5">Partitions with restricted parts modulo 5</a>

%K nonn

%O 1,17

%A _Olivier GĂ©rard_

%E Edited and extended by _Max Alekseyev_, Dec 01 2013