login
Number of partitions of n such that cn(0,5) = cn(1,5) < cn(2,5) = cn(3,5) = cn(4,5).
0

%I #10 Dec 01 2013 23:35:33

%S 0,0,0,0,0,0,0,0,1,0,0,0,0,3,0,0,0,1,6,0,0,0,3,11,0,0,1,9,20,0,0,3,20,

%T 39,0,1,9,44,79,0,3,23,87,162,1,9,53,173,326,3,23,114,330,640,9,56,

%U 236,629,1217,23,123,468,1175,2253,56,263,905,2177,4072,126,534,1710,3963,7216,272,1058,3167,7129,12575

%N Number of partitions of n such that cn(0,5) = cn(1,5) < cn(2,5) = cn(3,5) = cn(4,5).

%C Also, number of partitions of n such that cn(2,5) = cn(4,5) < cn(0,5) = cn(1,5) = cn(3,5).

%C For a given partition, cn(i,n) means the number of its parts equal to i modulo n.

%H <a href="http://oeis.org/wiki/Partitions_with_restricted_parts_modulo_5">Partitions with restricted parts modulo 5</a>

%K nonn

%O 1,14

%A _Olivier GĂ©rard_

%E Edited and extended by _Max Alekseyev_, Dec 01 2013