login
Number of partitions of n such that cn(0,5) = cn(1,5) < cn(3,5) <= cn(2,5) = cn(4,5).
0

%I #10 Dec 01 2013 23:34:26

%S 0,0,0,0,0,0,0,0,1,0,0,0,0,3,1,0,0,1,6,3,1,0,3,12,8,3,2,9,23,18,8,6,

%T 22,48,38,21,17,50,103,77,47,44,104,218,158,102,102,217,448,317,216,

%U 222,434,898,629,444,468,859,1740,1232,888,948,1667,3289,2367,1749,1872,3185,6082,4466,3365,3618,5972,11038

%N Number of partitions of n such that cn(0,5) = cn(1,5) < cn(3,5) <= cn(2,5) = cn(4,5).

%C Also, number of partitions of n such that cn(2,5) = cn(4,5) < cn(3,5) <= cn(0,5) = cn(1,5).

%C For a given partition, cn(i,n) means the number of its parts equal to i modulo n.

%H <a href="http://oeis.org/wiki/Partitions_with_restricted_parts_modulo_5">Partitions with restricted parts modulo 5</a>

%K nonn

%O 1,14

%A _Olivier GĂ©rard_

%E Edited and extended by _Max Alekseyev_, Dec 01 2013