login
Number of partitions of n such that cn(0,5) = cn(1,5) < cn(2,5) = cn(4,5) <= cn(3,5).
0

%I #10 Dec 01 2013 23:32:05

%S 0,0,0,0,0,0,0,0,1,0,0,1,0,3,1,0,3,2,6,3,2,7,6,13,7,6,17,16,26,18,16,

%T 36,38,55,39,40,77,84,119,84,90,165,174,253,180,193,345,360,522,375,

%U 406,705,719,1056,763,825,1416,1420,2065,1531,1640,2765,2758,3945,2992,3206,5282,5268,7381,5732,6139,9895

%N Number of partitions of n such that cn(0,5) = cn(1,5) < cn(2,5) = cn(4,5) <= cn(3,5).

%C Also, number of partitions of n such that cn(2,5) = cn(4,5) < cn(0,5) = cn(1,5) <= cn(3,5).

%C For a given partition, cn(i,n) means the number of its parts equal to i modulo n.

%H <a href="http://oeis.org/wiki/Partitions_with_restricted_parts_modulo_5">Partitions with restricted parts modulo 5</a>

%K nonn

%O 1,14

%A _Olivier GĂ©rard_

%E Edited and extended by _Max Alekseyev_, Dec 01 2013