login
Number of partitions of n such that cn(0,5) = cn(1,5) = cn(3,5) <= cn(2,5) = cn(4,5).
0

%I #10 Dec 01 2013 23:27:17

%S 0,0,0,0,0,1,0,0,0,0,2,1,0,0,1,3,2,1,0,5,5,5,2,1,15,10,9,5,2,37,23,19,

%T 11,5,77,54,37,23,11,151,118,79,47,25,282,245,160,98,51,520,483,325,

%U 196,108,944,918,636,390,216,1713,1691,1221,758,431,3077,3054,2274,1445,834,5502,5413,4158,2695,1592,9727

%N Number of partitions of n such that cn(0,5) = cn(1,5) = cn(3,5) <= cn(2,5) = cn(4,5).

%C Also, number of partitions of n such that cn(2,5) = cn(3,5) = cn(4,5) <= cn(0,5) = cn(1,5).

%C For a given partition, cn(i,n) means the number of its parts equal to i modulo n.

%H <a href="http://oeis.org/wiki/Partitions_with_restricted_parts_modulo_5">Partitions with restricted parts modulo 5</a>

%K nonn

%O 1,11

%A _Olivier GĂ©rard_

%E Edited and extended by _Max Alekseyev_, Dec 01 2013