login
Number of partitions of n such that cn(0,5) = cn(1,5) <= cn(3,5) <= cn(2,5) = cn(4,5).
0

%I #10 Dec 01 2013 23:24:43

%S 0,0,0,0,0,1,0,0,1,0,2,1,0,3,2,3,2,2,6,8,6,5,5,13,23,13,11,14,25,55,

%T 31,25,33,53,115,75,54,73,114,228,165,123,151,243,440,347,262,315,499,

%U 837,699,547,630,1006,1573,1362,1104,1249,1956,2945,2579,2169,2425,3720,5444,4803,4146,4630,6916,9968

%N Number of partitions of n such that cn(0,5) = cn(1,5) <= cn(3,5) <= cn(2,5) = cn(4,5).

%C Also, number of partitions of n such that cn(2,5) = cn(4,5) <= cn(3,5) <= cn(0,5) = cn(1,5).

%C For a given partition, cn(i,n) means the number of its parts equal to i modulo n.

%H <a href="http://oeis.org/wiki/Partitions_with_restricted_parts_modulo_5">Partitions with restricted parts modulo 5</a>

%K nonn

%O 1,11

%A _Olivier GĂ©rard_

%E Edited and extended by _Max Alekseyev_, Dec 01 2013