login
A036861
Number of partitions of n such that cn(1,5) < cn(0,5) = cn(2,5) < cn(3,5) = cn(4,5).
0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 4, 0, 1, 0, 0, 12, 0, 4, 0, 2, 29, 0, 12, 0, 8, 63, 2, 31, 0, 26, 127, 8, 71, 3, 70, 246, 26, 151, 12, 171, 466, 70, 305, 40, 382, 869, 173, 597, 111, 808, 1606, 392, 1135, 281, 1630, 2941, 844, 2122, 653, 3174, 5338, 1731, 3902, 1440, 6001
OFFSET
1,26
COMMENTS
Also, number of partitions of n such that cn(1,5) < cn(3,5) = cn(4,5) < cn(0,5) = cn(2,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
CROSSREFS
Sequence in context: A115713 A199571 A036859 * A120324 A136630 A275714
KEYWORD
nonn
EXTENSIONS
Edited and extended by Max Alekseyev, Dec 01 2013
STATUS
approved