login
Number of partitions of n such that cn(1,5) < cn(0,5) = cn(2,5) <= cn(3,5) = cn(4,5).
0

%I #10 Dec 01 2013 23:17:28

%S 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,4,0,1,0,0,10,0,4,0,2,21,0,12,0,8,

%T 40,2,29,0,26,75,8,63,3,68,140,26,127,12,161,268,70,246,40,346,513,

%U 171,467,111,709,985,382,873,279,1386,1866,808,1620,643,2633,3491,1631,2982,1402,4877,6414,3178,5448,2904

%N Number of partitions of n such that cn(1,5) < cn(0,5) = cn(2,5) <= cn(3,5) = cn(4,5).

%C Also, number of partitions of n such that cn(1,5) < cn(3,5) = cn(4,5) <= cn(0,5) = cn(2,5).

%C For a given partition, cn(i,n) means the number of its parts equal to i modulo n.

%H <a href="http://oeis.org/wiki/Partitions_with_restricted_parts_modulo_5">Partitions with restricted parts modulo 5</a>

%K nonn

%O 1,19

%A _Olivier GĂ©rard_

%E Edited and extended by _Max Alekseyev_, Dec 01 2013