login
Number of partitions of n such that cn(0,5) = cn(2,5) < cn(1,5) <= cn(3,5) = cn(4,5).
0

%I #10 Dec 01 2013 23:12:54

%S 0,0,0,0,0,0,0,1,0,0,0,0,3,0,1,1,0,6,0,3,3,1,12,1,8,9,3,23,4,18,21,9,

%T 48,12,38,48,23,102,32,78,99,53,216,76,159,205,117,444,169,321,408,

%U 250,888,359,639,805,515,1720,734,1255,1556,1038,3249,1459,2417,2967,2043,6002,2833,4572,5553,3940,10886

%N Number of partitions of n such that cn(0,5) = cn(2,5) < cn(1,5) <= cn(3,5) = cn(4,5).

%C Also, number of partitions of n such that cn(3,5) = cn(4,5) < cn(1,5) <= cn(0,5) = cn(2,5).

%C For a given partition, cn(i,n) means the number of its parts equal to i modulo n.

%H <a href="http://oeis.org/wiki/Partitions_with_restricted_parts_modulo_5">Partitions with restricted parts modulo 5</a>

%K nonn

%O 1,13

%A _Olivier GĂ©rard_

%E Edited and extended by _Max Alekseyev_, Dec 01 2013