login
Number of partitions of n such that cn(0,5) = cn(2,5) < cn(3,5) = cn(4,5) <= cn(1,5).
0

%I #10 Dec 01 2013 23:09:37

%S 0,0,0,0,0,0,0,1,1,1,1,1,4,4,4,5,5,11,12,12,15,15,26,30,31,40,40,60,

%T 70,73,94,96,135,157,164,211,218,298,344,359,453,474,640,733,763,950,

%U 1000,1339,1525,1584,1942,2055,2724,3093,3211,3894,4128,5410,6127,6363,7642,8116,10500,11874,12341,14718

%N Number of partitions of n such that cn(0,5) = cn(2,5) < cn(3,5) = cn(4,5) <= cn(1,5).

%C Also, number of partitions of n such that cn(3,5) = cn(4,5) < cn(0,5) = cn(2,5) <= cn(1,5).

%C For a given partition, cn(i,n) means the number of its parts equal to i modulo n.

%H <a href="http://oeis.org/wiki/Partitions_with_restricted_parts_modulo_5">Partitions with restricted parts modulo 5</a>

%K nonn

%O 1,13

%A _Olivier GĂ©rard_

%E Edited and extended by _Max Alekseyev_, Dec 01 2013