login
Number of partitions of n such that cn(1,5) <= cn(0,5) = cn(2,5) <= cn(3,5) = cn(4,5).
0

%I #10 Dec 01 2013 22:51:57

%S 0,0,0,0,0,0,1,0,0,0,0,2,0,2,1,0,3,0,6,5,2,5,0,15,15,6,10,3,30,36,17,

%T 23,10,59,78,40,53,31,112,156,86,120,79,218,302,174,254,186,427,576,

%U 343,517,397,835,1087,662,1015,816,1615,2036,1260,1942,1601,3073,3770,2372,3636,3061,5737,6907,4413,6698

%N Number of partitions of n such that cn(1,5) <= cn(0,5) = cn(2,5) <= cn(3,5) = cn(4,5).

%C Also, number of partitions of n such that cn(1,5) <= cn(3,5) = cn(4,5) <= cn(0,5) = cn(2,5).

%C For a given partition, cn(i,n) means the number of its parts equal to i modulo n.

%H <a href="http://oeis.org/wiki/Partitions_with_restricted_parts_modulo_5">Partitions with restricted parts modulo 5</a>

%K nonn

%O 1,12

%A _Olivier GĂ©rard_

%E Edited and extended by _Max Alekseyev_, Dec 01 2013