login
Number of partitions of n such that cn(0,5) = cn(2,5) <= cn(3,5) = cn(4,5) < cn(1,5).
0

%I #9 Dec 01 2013 22:44:57

%S 1,1,1,1,1,2,2,2,3,3,4,5,5,8,8,10,12,13,20,20,26,31,32,47,49,66,77,79,

%T 107,114,157,182,186,240,257,353,409,418,523,562,758,878,901,1109,

%U 1192,1570,1816,1875,2285,2455,3162,3648,3781,4582,4925,6215,7151,7438,8963,9638,11967,13724,14311,17156

%N Number of partitions of n such that cn(0,5) = cn(2,5) <= cn(3,5) = cn(4,5) < cn(1,5).

%C Also, number of partitions of n such that cn(3,5) = cn(4,5) <= cn(0,5) = cn(2,5) < cn(1,5).

%C For a given partition, cn(i,n) means the number of its parts equal to i modulo n.

%H <a href="http://oeis.org/wiki/Partitions_with_restricted_parts_modulo_5">Partitions with restricted parts modulo 5</a>

%K nonn

%O 1,6

%A _Olivier GĂ©rard_

%E Edited and extended by _Max Alekseyev_, Dec 01 2013