login
A036831
Schoenheim bound L_1(n,4,3).
6
1, 4, 6, 11, 14, 25, 30, 47, 57, 78, 91, 124, 140, 183, 207, 257, 285, 352, 385, 466, 510, 600, 650, 763, 819, 950, 1020, 1163, 1240, 1411, 1496, 1689, 1791, 1998, 2109, 2350, 2470, 2737, 2877, 3161, 3311, 3634, 3795, 4148, 4332, 4704, 4900, 5317, 5525, 5976
OFFSET
4,2
REFERENCES
W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992. See Eq. 1.
MAPLE
L := proc(v, k, t, l) local i, t1; t1 := l; for i from v-t+1 to v do t1 := ceil(t1*i/(i-(v-k))); od: t1; end; # gives Schoenheim bound L_l(v, k, t). Current sequence is L_1(n, 4, 3, 1).
MATHEMATICA
L[v_, k_, t_, l_] := Module[{i, t1}, t1 = l; For[i = v - t + 1, i <= v, i++, t1 = Ceiling[t1*i/(i - (v - k))]]; t1];
T[n_, k_] := L[n + 2, k + 2, k + 1, 1];
a[n_] := T[n - 2, 2];
Table[a[n], {n, 4, 49}] (* Jean-François Alcover, Mar 07 2023, after Maple code *)
CROSSREFS
Lower bound to A011979. Cf. A011975.
A column of A036838.
Sequence in context: A002732 A144065 A343098 * A084263 A232807 A309160
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 11 2002
STATUS
approved