This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A036827 a(n) = 26+2^(n+1)*(-13+9*n-3*n^2+n^3). 6
 0, 2, 34, 250, 1274, 5274, 19098, 63002, 194074, 567322, 1591322, 4317210, 11395098, 29392922, 74350618, 184942618, 453378074, 1097334810, 2626158618, 6222250010, 14610858010, 34032582682, 78693531674, 180757725210, 412685959194 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES M. Petkovsek et al., A=B, Peters, 1996, p. 97. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 S. Sykora, Finite and Infinite Sums of the Power Series (k^p)(x^k), DOI 10.3247/SL1Math06.002, Section V. Index entries for linear recurrences with constant coefficients, signature (9, -32, 56, -48, 16). FORMULA a(n) = Sum_{k=0..n} 2^k*k^3. - Benoit Cloitre, Jun 11 2003 G.f.: (-2*x*(4*x^2+8*x+1))/((x-1)*(2*x-1)^4). [Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009] a(n) = 9*a(n-1)-32*a(n-2)+56*a(n-3)-48*a(n-4)+16*a(n-5) for n>4 with a(0)=0, a(1)=2, a(2)=34, a(3)=250, a(4)=1274. - Harvey P. Dale, Dec 15 2011 a(n) = Sum_{k=0..n} Sum_{i=0..n} k^3 * C(k,i). - Wesley Ivan Hurt, Sep 21 2017 EXAMPLE a(3) = 2^0*0^3 + 2^1*1^3 + 2^2*2^3 + 2^3*3^3 = 250. MATHEMATICA Table[26 + 2^(n+1) (-13 + 9n - 3n^2 + n^3), {n, 0, 30}] (* or *) LinearRecurrence[ {9, -32, 56, -48, 16}, {0, 2, 34, 250, 1274}, 31] (* Harvey P. Dale, Dec 15 2011 *) PROG (Haskell) a036827 n = 2^(n+1) * (n^3 - 3*n^2 + 9*n - 13) + 26 -- Reinhard Zumkeller, May 24 2012 (PARI) a(n)=26+2^(n+1)*(-13+9*n-3*n^2+n^3) \\ Charles R Greathouse IV, Oct 07 2015 CROSSREFS Cf. A232599, A232600, A232601, A232602. Sequence in context: A206624 A131471 A318268 * A136362 A220507 A263689 Adjacent sequences:  A036824 A036825 A036826 * A036828 A036829 A036830 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 24 12:01 EDT 2019. Contains 322429 sequences. (Running on oeis4.)