login
A036763
Numbers k such that k*d(x) = x has no solution for x, where d (A000005) is the number of divisors; sequence gives impossible x/d(x) quotients in order of magnitude.
19
18, 27, 30, 45, 63, 64, 72, 99, 105, 112, 117, 144, 153, 160, 162, 165, 171, 195, 207, 225, 243, 252, 255, 261, 279, 285, 288, 294, 320, 333, 336, 345, 352, 360, 369, 387, 396, 405, 416, 423, 435, 441, 465, 468, 477, 490, 504, 531, 544, 549, 555, 567, 576
OFFSET
1,1
COMMENTS
A special case of a bound on d(n) by Erdős and Suranyi (1960) was used to get a limit: a = x/d(x) > 0.5*sqrt(x) and below 4194304 a computer test shows these values did not occur as x = a*d(x). For larger x this is impossible since if d(x) < sqrt(x), then x/d(x) > sqrt(4194304) = 2048 > the given terms.
A051521(a(n)) = 0. - Reinhard Zumkeller, Dec 28 2011
This sequence contains all numbers of the form k = 9p, p prime (i.e., k = 18, 27, 45, 63, 99, ...). - Jianing Song, Nov 25 2018
REFERENCES
P. Erdős and J. Suranyi, Selected Topics in Number Theory, Tankonyvkiado, Budapest, 1960 (in Hungarian).
P. Erdős and J. Suranyi, Selected Topics in Number Theory, Springer, New York, 2003 (in English).
LINKS
EXAMPLE
No natural number x exists for which x = 18*d(x), so 18 is a term.
MAPLE
with(numtheory): A036763 := proc(n) local k, p: for k from 1 to 4*n^2 do p:=n*k: if(p=n*tau(p))then return NULL: fi: od: return n: end: seq(A036763(n), n=1..100); # Nathaniel Johnston, May 04 2011
MATHEMATICA
noSolQ[n_] := !AnyTrue[Range[4*n^2], # == DivisorSigma[0, n*#]& ];
Reap[Do[If[noSolQ[n], Print[n]; Sow[n]], {n, 600}]][[2, 1]] (* Jean-François Alcover, Jan 30 2018 *)
PROG
(Haskell)
a036763 n = a036763_list !! (n-1)
a036763_list = filter ((== 0) . a051521) [1..]
-- Reinhard Zumkeller, Dec 28 2011
KEYWORD
nonn
AUTHOR
EXTENSIONS
Definition corrected by N. J. A. Sloane, May 18 2022 at the suggestion of David James Sycamore.
STATUS
approved