

A036527


Smallest cube containing exactly n 0's.


20



1, 0, 140608, 1000, 4096000, 140608000, 1000000, 4096000000, 140608000000, 1000000000, 4096000000000, 140608000000000, 1000000000000, 4096000000000000, 140608000000000000, 1000000000000000, 4096000000000000000, 140608000000000000000, 1000000000000000000, 4096000000000000000000, 140608000000000000000000, 1000000000000000000000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

a(n)^(1/3) = A048365(n) is the index of the first occurrence of n in A269250.  For n = 3k, obviously a(n) = 10^n. The first terms for indices n = 3k+1 and n = 3k+2 equals 4096*10^3k resp. 140608*10^3k. Is there an index from where on this is no longer true?  M. F. Hasler, Feb 20 2016


LINKS

Table of n, a(n) for n=0..21.


FORMULA

a(n) = A048365(n)^3; a(3n) = 10^(3n); a(3n+1) <= 4096*10^(3n) = (16*10^n)^3 for n>0; a(3n+2) <= 140608*10^(3n) = (52*10^n)^3, with equality for all known terms.  M. F. Hasler, Feb 20 2016


CROSSREFS

Cf. A269250, A086008, A048365.
Cf. A036528  A036536 for other digits 1  9.
Analog for squares: A036507 = A048345^2.
Sequence in context: A156409 A281583 A186613 * A250570 A252017 A203833
Adjacent sequences: A036524 A036525 A036526 * A036528 A036529 A036530


KEYWORD

nonn,base


AUTHOR

David W. Wilson


EXTENSIONS

Extended to a(0) = 1 and three lines of data completed by M. F. Hasler, Feb 20 2016


STATUS

approved



