login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036498 Numbers of the form m*(6*m-1) and m*(6*m+1), where m is an integer. 11
0, 5, 7, 22, 26, 51, 57, 92, 100, 145, 155, 210, 222, 287, 301, 376, 392, 477, 495, 590, 610, 715, 737, 852, 876, 1001, 1027, 1162, 1190, 1335, 1365, 1520, 1552, 1717, 1751, 1926, 1962, 2147, 2185, 2380, 2420, 2625, 2667, 2882, 2926, 3151, 3197, 3432, 3480 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

PartitionQ[ p ] is odd and contains an extra even partition; series term z^p in Product( 1-z^n, (n,1,oo) ) has coefficient (+1). - Wouter Meeussen

Numbers n such that the number of partitions of n into distinct parts with an even number of parts exceed by 1 the number of partitions of n into distinct parts with an odd number of parts. [See, e.g., the Freitag-Busam reference given under A036499, p. 410. - Wolfdieter Lang, Jan 18 2016]

In formal power series, A010815=(product(1-x^k),k>0), ranks of coefficients 1 (A001318=ranks of nonzero (1 or -1) in A010815=ranks of odds terms in A000009).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).

FORMULA

a(n) = n(n+1)/6 for n=0 or 5 (mod 6).

a(n) = 1/8*(-1+(-1)^n+2*n)*(-3+(-1)^n+6*n) (see MATHEMATICA code).

G.f.: x^2*(5+2*x+5*x^2)/((1+x)^2*(1-x)^3). - Colin Barker, Apr 02 2012

a(1)=0, a(2)=5, a(3)=7, a(4)=22, a(5)=26, a(n)=a(n-1)+2*a(n-2)- 2*a(n-3)- a(n-4)+a(n-5). - Harvey P. Dale, Aug 13 2012

Bisections: a(2*k+1) = A001318(4*k) = k*(1+6*k) = A049453(k), k >= 0; a(2*k) = A001318(4*k-1) = k*(-1+6*k) = A049452(k), k >= 1. - Wolfdieter Lang, Jan 18 2016

MAPLE

p1 := n->n*(6*n-1): p2 := n->n*(6*n+1): S:={}: for n from 0 to 100 do S := S union {p1(n), p2(n)} od: S

MATHEMATICA

Table[ 1/8*(-1 + (-1)^k + 2*k)*(-3 + (-1)^k + 6*k), {k, 64} ]

CoefficientList[Series[x*(5+2*x+5*x^2)/((1+x)^2*(1-x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Apr 24 2012 *)

Rest[Flatten[{#(6#-1), #(6#+1)}&/@Range[0, 30]]] (* or *) LinearRecurrence[ {1, 2, -2, -1, 1}, {0, 5, 7, 22, 26}, 60] (* Harvey P. Dale, Aug 13 2012 *)

PROG

(PARI) \ps 5000; for(n=1, 5000, if(polcoeff(eta(x), n, x)==1, print1(n, ", ")))

(PARI) concat(0, Vec(x^2*(5+2*x+5*x^2)/((1+x)^2*(1-x)^3) + O(x^100))) \\ Altug Alkan, Jan 19 2016

(MAGMA) [1/8*(-1+(-1)^n+2*n)*(-3+(-1)^n+6*n): n in [1..50]]; // Vincenzo Librandi, Apr 24 2012

(MAGMA) /* By definition: */ A036498:=func<n | n*(6*n+1)>; [0] cat [A036498(n*m): m in [-1, 1], n in [1..25]]; // Bruno Berselli, Nov 13 2012

CROSSREFS

Cf. A000009, A001318, A010815, A036499. Union of A049452 and A049453.

Sequence in context: A162462 A165144 A084164 * A248086 A076409 A294154

Adjacent sequences:  A036495 A036496 A036497 * A036499 A036500 A036501

KEYWORD

nonn,easy

AUTHOR

Wouter Meeussen

EXTENSIONS

Better description from Claude Lenormand (claude.lenormand(AT)free.fr), Feb 12 2001

Additional comments and more terms from James A. Sellers, Feb 14 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 10:29 EDT 2020. Contains 334840 sequences. (Running on oeis4.)